Discerning Linkage-Based Algorithms among Hierarchical Clustering Methods
نویسندگان
چکیده
Selecting a clustering algorithm is a perplexing task. Yet since different algorithms may yield dramatically different outputs on the same data, the choice of algorithm is crucial. When selecting a clustering algorithm, users tend to focus on cost-related considerations (software purchasing costs, running times, etc). Differences concerning the output of the algorithms are not usually considered. Recently, a formal approach for selecting a clustering algorithm has been proposed [2]. The approach involves distilling abstract properties of the input-output behavior of different clustering paradigms and classifying algorithms based on these properties. In this paper, we extend the approach in [2] into the hierarchical setting. The class of linkagebased algorithms is perhaps the most popular class of hierarchical algorithms. We identify two properties of hierarchical algorithms, and prove that linkage-based algorithms are the only ones that satisfy both of these properties. Our characterization clearly delineates the difference between linkage-based algorithms and other hierarchical algorithms. We formulate an intuitive notion of locality of a hierarchical algorithm that distinguishes between linkagebased and “global” hierarchical algorithms like bisecting k-means, and prove that popular divisive hierarchical algorithms produce clusterings that cannot be produced by any linkage-based algorithm.
منابع مشابه
Choosing the Best Hierarchical Clustering Technique Based on Principal Components Analysis for Suspended Sediment Load Estimation
1- INTRODUCTION The assessment of watershed sediment load is necessary for controling soil erosion and reducing the potential of sediment production. Different estimates of sediment amounts along with the lack of long-term measurements limits the accessibility to reliable data series of erosion rate and sediment yield. Therefore, the observed data of suspended sediment load could be used to ...
متن کاملA Characterization of Linkage-Based Hierarchical Clustering
The class of linkage-based algorithms is perhaps the most popular class of hierarchical algorithms. We identify two properties of hierarchical algorithms, and prove that linkagebased algorithms are the only ones that satisfy both of these properties. Our characterization clearly delineates the difference between linkage-based algorithms and other hierarchical methods. We formulate an intuitive ...
متن کاملAssessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories
In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...
متن کاملEfficient Record Linkage Algorithms Using Complete Linkage Clustering.
Data from different agencies share data of the same individuals. Linking these datasets to identify all the records belonging to the same individuals is a crucial and challenging problem, especially given the large volumes of data. A large number of available algorithms for record linkage are prone to either time inefficiency or low-accuracy in finding matches and non-matches among the records....
متن کاملMLCA: A Multi-Level Clustering Algorithm for Routing in Wireless Sensor Networks
Energy constraint is the biggest challenge in wireless sensor networks because the power supply of each sensor node is a battery that is not rechargeable or replaceable due to the applications of these networks. One of the successful methods for saving energy in these networks is clustering. It has caused that cluster-based routing algorithms are successful routing algorithm for these networks....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011